
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

A Detection and Prevention Technique on SQL Injection Attacks

Zar Chi Su Su Hlaing

Faculty of Information Science

University of Computer Studies (Magway)

Magway, Myanmar

zarchissh@gmail.com

Myo Khaing

Faculty of Computer Science

University of Computer Studies (Maubin)

Maubin, Myanmar

myokhaingucsm@gmail.com

Abstract

With the web advancements are rapidly developing,

the greater part of individuals makes their transactions on

web, for example, searching through data, banking,

shopping, managing, overseeing and controlling dam and

business exchanges, etc. Web applications have gotten fit to

numerous individuals' day by day lives activities. Dangers

pertinent to web applications have expanded to huge

development. Presently a day, the more the quantity of

vulnerabilities will be diminished, the more the quantity of

threats become to increment. Structured Query Language

Injection Attack (SQLIA) is one of the incredible dangers of

web applications threats. Lack of input validation

vulnerabilities where cause to SQL injection attack on web.

SQLIA is a malicious activity that takes negated SQL

statement to misuse data-driven applications. This

vulnerability admits an attacker to comply crafted input to

disclosure with the application’s interaction with back-end

databases. Therefore, the attacker can gain access to the

database by inserting, modifying or deleting critical

information without legitimate approval. The paper presents

an approach which detects a query token with reserved

words-based lexicon to detect SQLIA. The approach

consists of two highlights: the first one creates lexicon and

the second step tokenizes the input query statement and

each string token was detected to predefined words lexicon

to prevent SQLIA. In this paper, detection and prevention

technologies of SQL injection attacks are experimented and

the result are satisfactory.

Keywords—SQL Injection Attack, Web applications,

Malicious activity, Vulnerabilities, Input validation

I. INTRODUCTION

Web application is one of the most mainstream

communication streams with the rapid development of web

advances. Information is a significant job in data

frameworks. Many associations run their transactions on

database appended web applications to get information from

clients. Web application is a significant wellspring of data

for any organization to get business process basic

information and broadly utilized in different applications.

With the ubiquity of web applications, there are numerous

security issues in the web world and furthermore increment

in web application vulnerabilities. SQL injection is software

vulnerabilities in web applications which is brought about by

absence of information approval. The information approval

weakness is where user input is utilized in the product

without affirming its legitimacy. SQL represents Structured

Query Language, which is the standard programming

language for creating social databases. It an order and

control language utilized in the making, altering, erasing,

and recovering the information and structures that involve

the social database framework. SQL injection is one of the

most serious dangers to the security of backend database

from driven applications.

SQL injection is an assault method with negated SQL

articulations used to abuse how site pages speak with back-

end databases. It can take a shot at defenseless website pages

that adventure a backend database like MySQL, Oracle and

MSSQL. Attackers can give directions (made SQL

explanations) to a database utilizing input fields on a site.

Figure 1 shows the procedure of SQLIA. These directions

control a database server behind a web application to get

self-assertive information from the application, meddle with

its rationale, or execute directions on the database server

itself. Along these lines, the impacts of SQLIA are side step

verification, extricating information, loss of privacy and

respectability.

SQL injection is strikingly like a XSS. The essential

contrast being that a XSS attack is executed at the web front

end, though the SQL assault is executed at the server. The

issue in the two cases is that client input was never approved

appropriately.

There is assortment of methods are accessible to

identify SQLIA. The most favored are Web Framework,

Static Analysis, Dynamic Analysis, consolidated Static and

Dynamic Analysis and Machine Learning Technique. Web

Framework gives separating way to deal with channel

exceptional characters however different assaults are not

recognized. Static Analysis checks the information

parameter type, yet it neglects to identify assaults with right

info type. Dynamic Analysis method is equipped for

checking vulnerabilities of web application however can't

distinguish a wide range of SQLIA. Joined Static and

Dynamic Analysis incorporates the advantage of both, yet

this technique is unpredictable so as to continue. AI strategy

can recognize a wide range of assaults however results in

number of bogus positives and negatives.

SQLIA can be presented with the following segment

of vulnerable Java code:

String uname= request.getParameter(“uname”);
String pword= request.getParameter(“password”);

String sql_query= ''SELECT name FROM member

WHERE username=' ''+uname+'' ' AND password= '
''+pword+'' ' '';
Statement stmt=connection.createStatement();
ResultSet rset=stmt. executeQuery(sql_query);

In this code, string variable sql_query is used for

keeping the cunning SQL query statement that is being

executed in the database.

Figure 1. How SQL Injection Attack Works

II. RELATED WORKS

N. Lambert et al. [1][5] proposed a model that uses a

tokenization technique to detect SQL injection attacks, so

query containing Alias, Instances and Set operations can

also be blocked at the entry point. It checks whether the

generated query based on user’s input its intended result,

and compare the results by applying tokenization technique

on an original query and input query. If the results are same,

there is no injection, otherwise it is present. I. Balasundaram

et al. [2] proposed a technique for SQLIA using ASCII

based string matching. This technique is used to check the

user input field with static and dynamic analysis to detect

and prevent SQLIA.

M. Kumar et al. [4] and William G.J. Halfond et al,

G.Yiĝt, M. Arnavutoglu [14], discussed the detection and

prevention techniques of SQL injection attacks and analyze

existing techniques against such attacks. B.J.S. Kumar &

P.P. Anaswara [15] experimented on detection and

prevention of SQL injection attack. D. Kilaru [12] observed

how SQL injection occurs and how to update a web app

with SQL injection vulnerability. R. M. Nadeem et al. [13]

proposed a system which is based on dynamic analyzer

model. This model received the user request and analyzed to

check that request is for pages without vulnerabilities (P’)

and with vulnerabilities (P), with help of knowledge base.

J.O.Atoum and A.J.Qaralleh [16] described static and

runtime SQL queries analysis called hybrid techniques

which is to create a defense strategy that can detect and

prevent various types of SQLIA.

III. TYPES OF SQLIA

In web-based applications, most of work is to access

data from databases. If the user input data is not properly

performed or validated, users can access information they

were not supposed to get access to. The following

techniques are types of SQLIA.

A. Tautologies

In tautology based attack, the general goal of attacker

is to input crafted SQL tokens that cause the conditional

query statement to be evaluated always true. An attacker

undertakes an input field with vulnerability that is utilized in

the query’s WHERE predicated and transform the condition

into a tautology which is always true. This predicate logic is

assessed as the database examines each tuple in the table. If

the predicate logic at WHERE clause is evaluated as a

tautology, the database match and returns all tuples in the

table rather than associating only one tuple, as it would

normally do in the sense of injections. This type of attack

proceeds to bypass authentication and extract data [4, 7, and

14].

Smith

' OR 'a'='a
SELECT name FROM member WHERE

username='Smith' AND password= ' ' OR

'a'= 'a'

' OR 'a'='a

' OR 'a'='a
SELECT name FROM member WHERE

username =' ' OR 'a'='a' AND password=' '

OR 'a'='a'

'OR 'a'='a'
- -

SELECT name FROM member WHERE

username =' ' OR 'a'='a' - - ' AND

password=' '

This query statement is always true because it have been

added by the tautology statement ('a'='a'). Double dash “--”

instructs the SQL parser that the rest of statement is a

comment and should not be executed

Attacker success

to exploit

database

information

Login

username

password
Web

Application

Web Server

B. Malformed Queries

In this approach, when the attacker abuses an

illegitimate or deficient SQL token, the rejected error

message is come back from the database including helpful

debugging information. The error message causes assailants

to precisely distinguish which parameters are vulnerable in

an application and the total outline of the underlying

database. This situation was misused by assailant's crafted

SQL tokens or garbage input that causes syntax mistake,

type jumble or logical error into the database. To recognize

injectable parameters, syntax errors can be utilized. Type

errors can be applied to conclude the information kinds of

specific attribute or to remove information. Logical errors

can be out the table names and attribute names that cause

the mistake or error [9].

C. Union Query

In this technique, attackers injected invalid statement

is joined with the valid query by the utilizing UNION

keyword. Attackers misuse a query statement of the

structure "UNION <injected query>" as far as possible of

the end of legitimate statement. It makes the application

return information from the results of original query and

furthermore information from another table. Then, the

statement written the double dash “- -” will be comment out

[11].

SELECT name FROM member WHERE
username=''UNION SELECT password FROM member

WHERE username='admin' -- AND password=''

In this query, the original query returns null set

whereas the exploited query statement returns data from the

same table.

D. Piggy-backed Queries

In the piggy-backed query-based attack, an attacker

attempts to add extra queries into the first inquiry string. It

abuses database by the query delimiter, for example, ";" to

add additional query to the first query. In the event that the

attack is fruitful, the database gets and executes a query

statement that contains numerous particular inquiries. The

first query is the original legitimate query, which is to

execute the database whereas the second query, malicious

query is to misuse the database [4].

SELECT name FROM member WHERE username='Smith'

AND password=''; DROP table users - -

The two queries were separated by the delimiter, “;”, and

both were executed. The second query makes the database

fails to client table information. Different sorts of queries

can be executed with this technique, for example, addition

of new clients into the database or execution of stored

procedures. It is worth nothing that numerous databases

don't require a special character to isolate distinct queries,

so basically examining for an exceptional or special

character isn't an effective way to prevent this type of

attack.

E. Inference

In inference-based technique, attackers make queries

that cause an application or database to act contrastingly

based on the consequences of the query. There are two well-

known assault strategies that depend on inference: blind

injection and timing attacks.

In blind injection, developers omit detail information

of error messages. These messages assist attackers to exploit

to the databases. In this case, Attackers are trying to exploit

the database with the vulnerable query statement that has a

boolean result. Then they analyze differences based on the

applications responses.

In timing attacks, attackers collect data from database

by detecting timing delays in the database’s responses. It

depend on the database pausing for a specified time limit,

then returning the information that is indicating successful

query executing [8].

SELECT name FROM member WHERE username=
IF(((SELECT UPPER(MID(password,1,1)) FROM member

WHERE username='admin') ='A'), SLEEP(5),1)

F. Stored Procedure

In this approach, stored procedures are victims for

attackers to exploit database. Stored procedures are codes

that are stored in the database and execute directly by the

database engine. To activate SQLIA, attackers can create

injected text to exploit this stored procedure as

SELECT name FROM member WHERE username='';
SHUTDOWN; - - password=''

IV. PREVENTION TECHNIQUES

A. Prepared Statement

One of the best ways to prevent from SQL injection

is to use prepared statement instead of statement. The

problem of SQL injection is that user’s input is used as part

of the SQL statement. By using prepared statement, the

SQL statement uses a parameter to insert a value into the

database. Instead of inserting the values directly into the

statement, thus prevent the backend database from running

invalidated SQL queries that are unsafe and harmful to the

database.

B. Using Stored Procedures

Stored Procedures adds an additional security layer

to the database other than utilizing Prepared Statements. It

performs the getting away from required so that the

application takes input as data to be worked on instead of

SQL code to be executed. The distinction between prepared

statement and stored procedure is that the SQL code for a

stored procedure is composed and stored in the database

server, and then called from the web application.

If user access to the database is just at any point

allowed by means of stored procedure strategies, permitted

access for user to legitimately get to data doesn’t not need to

be explicitly granted on any database table. Along these

lines, the database is still safe.

C. Validating User Input

In validating, user supplied input should be used after

confirming its validity. So, input validation is first to ensure

the user supplied input value is of the accepted type, length,

format, etc. Only the input which passed the validation

process prevent data from information sources, database.

D. Limitting Privileges

Limiting privileges is the concept of restricting
resources from user’s accesses. When you do not need to
access the important part of the database, don’t connect to
your database using an administrator account because the
attackers might have access to the entire source of system.
Therefore, to identify the authenticated user there should be
used an account with limited privileges to limit the extent of
harms in the occurrence of SQL Injection.

E. Encrypting Data

Unencrypted data stored in database can be stolen if

missing authorization or invalidated input allows users to

read the data. If attackers try to gain access to database and

its table, the encrypted data value will prevent attacker to

read sensitive data and any further changes to databases

would have no effect.

V. PROPOSED APPROACH

There are many different techniques for detecting the

SQL injection attacks. The proposed technique is based on

sanitizing the query statement. This approach consists of

two steps: the first one is tokenizing the user inputted query.

The tokenization process is made by detecting a white

space, double dashes (--), sharp sign (#) and all strings

before each symbol are tokens. In second step, after the

query is tokenizing, each string token was detected with the

contents of predefined lexicon. The contents of lexicon are

most of reserved words (commands) and some logical

operators. The contents of lexicon are collected most of

injected commands or words in SQL injection attacks. The

following table, Table I describes some words of lexicon’s

contents. There are 20 words in it. When the input query

statement enters, whether to detect injection or not. During

execution, the inputted data are matched with the

corresponding lexicon’s contents to check for validity. If

there are matched to any other words, there is an attempt to

SQL injection attack. If no, there is not an injection.

TABLE I. SAMPLE CONTENS OF LEXICON

No Injected command

1 alter

2 concat

3 drop

4 delete

5 execute

6 sleep

7 shutdown

8 union

9 or

10 if

Figure 1.Flow of Proposed Approach

stop

tokenizing process

lexicon

detection process

Yes

start

No
match?

No Injection
Injection

SQL query statement

OR operator

detection

reserved word

detection

TABLE II. ALGORITHM FOR PROPSED SYSTEM

Algorithm: Detection

begin
Input: SQL query statement
file= read contents in lexicon

N=Tokenize the query statement

flag=false

while (!eof(file))

{

 flag= false;

 for (int i=0; i< N; i++)

 if (token[i]== word in lexicon)
 flag=true;
}

if (flag) print “Injection detected”;

else print “No injection”;

end

0 1 2 3 4

Select*from member where username= Smith

Figure 2. Tokening result without injection

0 1 2 3 4 5 6 7 8

Select*from member where username= Smith or 1 = 1

Figure 3.Tokening result with injection

0 1 2 3 4 5 6

Select name from member where username= union

7 8 9 11 12 13 14

Select cardno from Account where accNo= 11051

Figure 4. Tokening result with injection

The main concept of this approach is to detection to

SQLIA by searching each token in predefined word of

lexicon which causes to WHERE condition is always true.

VI. EXPERIMENT

In this section, the system performed some SQL

injection queries on vulnerable query statement. The system

tested 10 SQL query statements. These are 3 normal

statements and 7 injection statements. The result outcomes

describe in Table IV. The false positive and true negative

scores are 0 and 7 respectively and accuracy is very good.

The following table, TABLE V presents the outcomes of

analysis which have evaluated. Therefore, the proposed

system is done for successful prevention from various

malicious query for injections.

String uname= “alice”;
String pass= “alice123”;
String query= ''SELECT * FROM member WHERE
username=' ''+uname+' '' AND password= ' ''+pass+'' ' '';

uname= “alice”;
pass= “ ' or '1=1 ”;
String query_bad= ''SELECT * FROM member WHERE
username=' ''+uname+' '' AND password= ' ''+pass+ '' ' '';

Display Query Statement

Normal:
select * from member where username= 'alice' and
password= 'alice123'

Injection:
select * from member where username= 'alice' and
password= '' or '1=1'

The normal query statement is no problem, as the proposed

system will get data from this member table that satisfy the

predicate. However, the approach detects the injection

attack with crafted SQL statement.

String uname= "'; DELETE FROM member WHERE 1 or
username = '";
String query= ''SELECT * FROM member WHERE
username=' ''+uname+'' ';

Display Query Statement

 Injection: SELECT * FROM member WHERE
username=''; DELETE FROM member WHERE 1 or
username = ' '

When the system run this query, the injected delete

statement would completely empty the member table. This

system also detects the statement before to execute.

TABLE III. SQL QUERY STATEMENT

input SQL statement

smith

123

SELECT * FROM member WHERE username ='smith' AND password ='123'

' or '1=1

' or '1=1

SELECT * FROM member WHERE username =' ' or '1=1' AND password =' ' or '1=1'

smith

' or 'a'='a

Select * from member where username ='smith' and password =' ' or 'a '=' a'

' or ''='

' or ''='

SELECT * FROM member WHERE username =' ' or ' '=' ' AND password =' ' or ' '=' '

smith

' or ''='

SELECT * FROM member WHERE username ='smith' AND password =' ' or ' '=' '

' or '1=1'--

123

SELECT * FROM member WHERE username ='' or '1=1' --' AND password ='123'

 "'; DELETE FROM

member WHERE 1 or

username = '";

SELECT * FROM member WHERE username=' '; DELETE FROM member WHERE 1 or

username = ' '

''; SHUTDOWN; - - SELECT name FROM member WHERE username=''; SHUTDOWN; - - password=''
Smith

''; DROP table users - -

SELECT name FROM member WHERE username='Smith' AND password=''; DROP table

users - -

john

john123

SELECT * FROM member WHERE username = 'john' AND password ='john123'

blake

blake123

SELECT * FROM member WHERE username = 'blake' AND password ='blake123'

TABLE IV. OUTCOMES OF QUERY STATEMENTS

 Prediction Total

normal injection

Actual normal 3 0 3

injection 0 7 7

 3 7 10

 (1)

TABLE V. EXPERIMENT OUTCOMES

SQLIA Techniques Proposed approach’s outcomes

Tautologies Successful prevention

Malformed queries Successful prevention

Union queries Successful prevention

Piggy-back queries Successful prevention

Inference Successful prevention

Stored procedure Successful prevention

VII. CONCULSION

SQLIA is one of the dominant threats to web

application. Web applications need to protect their

database from varying number of threats in order to

provide confidentiality and integrity. In SQLIA,

intruders allow attacking with a crafted query statement

through a web input form into the system and then theft

identity, access to sensitive information, and tamper

with existing data, which can cause many disastrous

effects. This paper is presented on the techniques of

SQLIA and prevention approaches. The proposed

approach is used for the detection and prevention of

SQL injection and also suitable the outcomes.

ACKNOWLEDGMENT

I would like to express my deepest thanks to all

my teachers for their valuable advice, helpful

comments, and precious time for this research. Most

importantly, none of this would have been possible

without the love and patience of my family throughout

the process. My heartfelt thanks also extend to all my

colleagues and friends for their help, interest and

valuable hints for discussions about this.

REFERENCES

[1] N. Lambert, K.S. Lin; "Use of Query tokenization to detect and
prevent SQLinjection attacks", Proceedings of the 3rd
International Conference on Computer Science and
Information Technology (ICCSIT), Chengdu, China:IEEE
(2010). pp: 438-440, 2010.

[2] I. Balasundaram, E. Ramaraj, “An Efficient Technique for
Detection and Prevention of SQL Injection Attack using ASCII
Based String Matching”, International Conference on
Communication Technology and System Design, Prodedia
Engineering, pp. 183-190, 2012.

[3] Dr. R. Shettar, A. Ghosh, A. Mohan, A. Pramod, C. Raikar, “
SQL Injection Attacks and Defensive Techniques”,
International Journal of Computer Technology & Applications,
vol. 5, no. 2, pp. 699-703, March-April 2014.

[4] M. Kumar, L. Indu, “Detection and Prevention of SQL
Injection Attack”, International Journal of Computer Science
and Information Technologies, vol. 5, no. 1, pp. 374-377,
2014.

[5] A. Kumar, S. Bhatt, “Use of Query Tokenization to Detect and
Prevent SQL Injection Attacks”, International Journal of
Science Technology & Engineering, vol. 2, issue. 01, pp. 97-
103, July 2015.

[6] RubidhaDevi.D, R. Venkatesan, Raghuraman.K, “A Study on
SQL Injection Techniques”, International Journal of Pharmacy
& Technology, vol. 8, issue. 4, pp. 22405-22415, December
2016.

[7] A. Gupta, Dr. S. K. Yadav, “An Approach for Preventing SQL
Injection Attack on Web Application”, International Journal of
Computer Science and Mobile Computing , vol.5, issue. 6, pp.
01-10, June 2016.

[8] M. Ŝtamper, “Inferential SQL Injection Attacks”, International
Journal of Network Security, vol 18, no. 2, pp. 316-325, Mar
2016.

[9] Sonakshi, R, Kumar, G. Gopal, “Case Study of SQL Injection
Attacks”, International Journal of Engineering Science &
Research Technology, pp. 176-189, July 2016.

[10] Z. S. Alwan, M. F. Younis, “Detection and Prevention of SQL
Injection Attack: A Survey”, International Journal of Computer
Science and Mobile Computing, vol. 6, issue. 8, pp. 5-17,
August 2017.

[11] G. Yigit, M. Amavutoglu, “SQL Injection Attacks Detection &
Prevention Techniques”, International Journal of Computer
Theory and Engineering, vol. 9, no. 5, pp. 351-356, October
2017.

[12] D. Kilaru, “Improving Techniques for SQL Injection
Defenses”, University of Colorado Colorado Springs, 2017.

[13] R. M. Nadeem, R.M. Saleem, R. Bashir, S. Habib, “Detection
and Prevention of SQL Injection Attack by Dynamic Analyzer
and Testing Model”, International Journal of Advanced
Computer Science and Applications, vol. 8, no. 8, 2017.

[14] William G.J. Halfond, A. Orso, “Detection and Prevention of
SQL Injection Attack”, Georgia Institute of Technology.

[15] B.J. S. Kumar, P.P. Anaswara, “Vulnerability Detection and
Prevention of SQL Injection”, International Journal of
Engineering & Technology, pp. 16-18, 2018.

[16] J.O.Atoum, A.J.Qaralleh, “A Hybrid Technique for SQL
Injection Attacks Detection and Prevention”, International
Journal of Database Management System, vol. 6, no. 1,
February, 2014.

